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Abstract. The generation of continuous variable entanglement via atomic coherence in a two-mode three-
level cascade atomic system is discussed according to the entanglement criterion proposed by Duan et al.
[Phys. Rev. Lett. 84, 2722 (2000)]. Atomic coherence between the top and bottom levels is induced with
two photons of a strong external pump field. It shows that entanglement for the two-mode field in the
cavity can be generated under certain conditions. Moreover, by means of the input-output theory, we show
that the two-mode entanglement could also be approached at the output.

PACS. 42.50.Dv Nonclassical states of the electromagnetic field, including entangled photon states; quan-
tum state engineering and measurements – 03.65.Ud Entanglement and quantum nonlocality (e.g. EPR
paradox, Bell’s inequalities, GHZ states, etc.)

QICS. 02.30.-n Entanglement, nonlocality, complementarity – 03.05.+c Characterization and classification
of entanglement

1 Introduction

Entanglement is one of the most characteristic properties
that makes quantum theory distinct from classical theory.
It plays an essential role in quantum information process-
ing such as quantum teleportation [1], quantum computa-
tion [2], and quantum cryptography [3]. In recent years,
entanglement in continuous variable (CV) systems [4] has
been attracted great interest both theoretically and ex-
perimentally. For instance, many criteria as the measure
of entanglement have been proposed for CV systems [5–9].
In experiments, the first observation of quantum telepor-
tation has been accomplished with two-mode squeezed
states [10] and many other schemes have also been pro-
posed such as light beams [11–15], atomic ensembles [16]
and cold atoms [17]. It is well-known that CV systems
embodied by light field modes may serve as reliable, long-
haul information carriers, due to properties of robustness
against decoherence [18–21].

On the other hand, atomic coherence, as a basic fea-
ture of quantum systems, has attracted much attention
in the research of quantum optics in past decades. It can
lead to various effects, such as electromagnetically induced
transparency (EIT) [22], correlated spontaneous emission
laser [23], change of spectra [24], population trapping [25],
and a laser without inversion [26,27]. Recently, two impor-
tant concepts, entanglement and atomic coherence, are
shown to be closely related. Xiong et al. [28] and Tan

a e-mail: xyping@smail.hust.edu.cn

et al. [29] showed atomic coherence can generate fields that
are entangled in a two-mode three-level cascade atomic
system. Li et al. [30] proposed a scheme that coherence in-
duced entanglement between two thermal fields of a three-
level atom in V configuration. Wang et al. [31] proposed
a scheme that coherence-enhanced and -controlled entan-
glement of two atoms in a single-mode thermal field.

In this paper, we will further discuss the relation be-
tween atomic coherence and entanglement in a two-mode
three-level cascade atomic system. For the sake of com-
parison with the scheme discussed in references [28,29], we
consider a three-level cascade atomic system that two pho-
tons of a strong external pump field induce atomic coher-
ence by coupling the top and bottom levels. We show that
the intracavity and output entanglement in the steady
state can be generated by the external pump field under
certain conditions.

The organization of this paper is as follows. Section 2
gives the master equation for the two-mode field in the
cavity. Section 3 is devoted to the entanglement analysis
between the two modes in the cavity, and the entangle-
ment of the output field is evaluated in this section. In
Section 4, we present a summary of our main results.

2 The model

We consider a two-photon three-level cascade configura-
tion as shown in Figure 1. The upper level a and the
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Fig. 1. Systematic diagram for a three-level atomic system in
cascade configuration.

bottom level c have the same parity, but the intermediate
level b has an opposite one. The dipole-allowed transitions
a ↔ b and b ↔ c with frequencies ν1 and ν3, respectively,
are considered weak and treated quantum mechanically up
to second order in coupling constant. The transition a ↔ c
requires two pump photons of frequency ν2. Strong pump
field is treated classically up to all orders. We assume that
the one-photon pump detuning ωbc−ν2 is sufficiently large
that the dipole transition c ↔ b with pump frequency ν2

is negligible. The pump frequency ν2 is exactly one-half
the atomic transition frequency ωac (≡ωa−ωc). The side-
mode frequencies ν1 and ν3 are assumed to satisfy the
conservation condition ν1 + ν3 = 2ν2, which gives the re-
lation between the side-mode detuning ∆′ and the beat
frequency ∆ ≡ ν2−ν1 as ∆′ = (ωbc −ν2)−∆. The Hamil-
tonian for the atom-field system is [32]

H = H0 + V, (1)

where the unperturbed part of the Hamiltonian is

H0 =
∑

i=a,b,c

�ωi|i〉〈i| +
3∑

j=1

�νja
†
jaj , (2)

and the perturbed part is

V =
3∑

j=1

�gjajUjσ
†
j + H.c., (3)

where a1 and a3 are the annihilation operators for the
field modes 1 and 3, a2 is the effective two-photon anni-
hilation operator for the pump mode, Uj = Uj(r) is the
spatial mode factor for the jth field mode, and gj is the
corresponding atom-field coupling constant. The matrices
σ†

j are

σ†
1 =

⎡

⎣
0 1 0
0 0 0
0 0 0

⎤

⎦, σ†
2 =

⎡

⎣
0 0 1
0 0 0
0 0 0

⎤

⎦, σ†
3 =

⎡

⎣
0 0 0
0 0 1
0 0 0

⎤

⎦. (4)

The time dependence of the atom-field density operator
ρa−f can be obtained from the basic density operator
equation of motion, as

d

dt
ρa−f = − i

�
[H, ρa−f ] + r, (5)

where r denotes the relaxation processes. By considering
the slowly varying field modes and taking traces over the
atomic states, the density matrix equation of motion for
the field modes as obtained in reference [32] is

d

dt
ρ = −A1(ρa1a

†
1 − a†

1ρa1) − (B1 + κ1)(a
†
1a1ρ − a1ρa†

1)

−A3(ρa3a
†
3 − a†

3ρa3) − (B3 + κ3)(a
†
3a3ρ − a3ρa†

3)

+C3(a
†
3a

†
1ρ − a†

1ρa†
3) + D1(ρa†

3a
†
1 − a†

1ρa†
3) + H.c.,

(6)

with κj (j = 1, 3) is the damping constant of each mode.
Different coefficients are given by

A1 =
Ng2

1D1

1 + I2
2

fa + I2
2D∗

3 D2/4T1T2

1 + I2
2D1D∗

3 /4T1T2
, (7)

B1 =
Ng2

1D1

1 + I2
2

fb

1 + I2
2D1D∗

3 /4T1T2
, (8)

A3 =
Ng2

3D3

1 + I2
2

fb

1 + I2
2D∗

1 D3/4T1T2
, (9)

B3 =
Ng2

3D3

1 + I2
2

fc − I2
2D∗

1 D2/4T1T2

1 + I2
2D∗

1 D3/4T1T2
, (10)

C3 =
iNg2

3D3

1 + I2
2

I2

2(T1T2)1/2

−faD
∗
1 + D2

1+I2
2D∗

1 D3/4T1T2
e−iφ, (11)

D1 =
iNg2

1D1

1 + I2
2

I2

2(T1T2)1/2

fcD∗
3 + D2

1+I2
2D1D∗

3 /4T1T2
e−iφ. (12)

The complex Lorentzian for the field modes 1 and 3 is

D1,3 =
1

γ1,3 + i∆1,3
, (13)

where γ1 and γ3 are the dipole decay constants for a ↔ b
and b ↔ c transitions, ∆1 = −∆3 = −∆′. D2 = 1/γ2,
where γ2 (≡ 1/T2) is the two-photon coherent decay rate
between the levels a and c. The dimensionless pump in-
tensity I2 is defined by I2 = 2|V2|(T1T2)1/2, where V2 =
g2U2(n2)1/2 is the effective two-photon interaction energy.
The population difference decay time T1 is

T1 =
1
Γa

[
1 +

Γ1

2Γ3

]
. (14)

The probability factors fk are

fa =
Γ3

Γ1 + 2Γ3
I2
2 , (15)

fb =
Γ1

Γ1 + 2Γ3
I2
2 , (16)

fc = 1 + fa. (17)

Also φ is the phase of the classical pump field and N is the
total number of interacting atoms. The terms Aj and Bj

with their complex conjugates are the gain and absorption
coefficients for the jth mode, respectively, and C3 and D1

represent the coupling between the two modes.
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3 Entanglement of the system

3.1 Two-mode entanglement in the cavity

To determine the entanglement of the field modes, we need
an entanglement criterion for the CV system. Here, we
choose the summation of the quantum fluctuations pro-
posed in reference [6]. According to this criterion, a state
is entangled if the sum of the quantum fluctuations of the
two Einstein-Podolsky-Rosen(EPR)-like operators û and
v̂ satisfies the following inequality

(∆û)2 + (∆v̂)2 < c2 +
1
c2

, (18)

where c is an arbitrary (nonzero) real number,

û = |c|x̂1 +
1
c
x̂2, v̂ = |c|p̂1 − 1

c
p̂2, (19)

with x̂1 = (a1 + a†
1)/

√
2, x̂2 = (a3 + a†

3)/
√

2, p̂1 =
(a1 − a†

1)/i
√

2, and p̂2 = (a3 − a†
3)/i

√
2 being the quadra-

ture operators for the two modes 1 and 3. They satisfy
the relation [x̂, p̂] = iδjj′ (j, j′ = 1, 2). For a general state,
this is a sufficient criterion for entanglement, and for two-
mode CV Gaussian states, this becomes a necessary and
sufficient criterion. It has been shown that the state gen-
erated in a driven cascade three-level atomic system is a
CV Gaussian state (in general a mixed state with the con-
sideration of fluctuations) [29] and for such a state, this
becomes a necessary and sufficient condition for entangle-
ment.

The equations of motion for the first and second mo-
ments of the fields can be obtained from the master equa-
tion (6)

d

dt
〈a1〉 = −α1〈a1〉 − D1〈a†

3〉, (20)

d

dt
〈a3〉 = −α3〈a3〉 + C3〈a†

1〉, (21)

d

dt
〈a†

1a1〉 = −α1〈a†
1a1〉 − D1〈a†

3a
†
1〉 + A1 + c.c., (22)

d

dt
〈a†

3a3〉 = −α3〈a†
3a3〉 + C3〈a†

3a
†
1〉 + A3 + c.c., (23)

d

dt
〈a1a3〉 = −(α1 + α3)〈a1a3〉+C3〈a†

1a1〉−D1〈a†
3a3〉+C3,

(24)

where αj = Bj −Aj +κj(j = 1, 3). The steady-state solu-
tion of equations (20–24) can be found by setting d/dt = 0.
Then we have 〈a1〉 = 〈a3〉 = 0 and the second-order solu-
tions can be expressed as follows

〈a†
1a1〉 =

1
D
{A1[α3(|α1 + α3|2) + (α1 + α3)C3D

∗
1 + c.c.]

+ A3(α1 + α3 + c.c.)|D1|2 − C3D
∗
1 [(α3 + α∗

3)(α
∗
1 + α∗

3)
+ C3D

∗
1 − C∗

3D1] + c.c.}, (25)

〈a†
3a3〉 =

1
D
{A3[α1(|α1 + α3|2) + (α1 + α3)C∗

3D1 + c.c.]

+ A1(α1 + α3 + c.c.)|C3|2 + |C3|2[(α1 + α∗
1)(α

∗
1 + α∗

3)
+ C∗

3D1 − C3D
∗
1 ] + c.c.}, (26)

Fig. 2. Variance λ vs. ∆′ for φ = 0 and π/2, I2 = 50, C = 5,
Γa = 1, Γ1 = Γ3 = 1, and γ1 = γ3 = γ2 = 1. All frequencies
are in units of γ2.

〈a1a3〉 =
1
D
{C3(A1 + A∗

1)[C3D
∗
1 − C∗

3D1 + (α3 + α∗
3)(α

∗
1 + α∗

3)]

+ (α1 + α∗
1)[α

∗
1(α3 + α∗

3)C3 + C3(C3D
∗
1 + c.c.)]

+ D1(A3 + A∗
3)[−C∗

3D1 + C3D
∗
1 − (α1 + α∗

1)(α
∗
1 + α∗

3)]
+ (α3 + α∗

3)[α
∗
3(α1 + α∗

1)C3]}. (27)

The denominator D in equations (25–27) is given by

D = (α1 + α∗
1)(α3 + α∗

3)|α1 + α3|2
+ (C∗

3D1 − C3D
∗
1)

2 + {(α1 + α∗
1)C3D

∗
1(α1 + α3)

+ (α3 + α∗
3)C

∗
3D1(α1 + α3) + c.c.}. (28)

From them one can calculate the quantum fluctuations
of the EPR operators û and v̂. The resulting expression
is [33]

(∆û)2 + (∆v̂)2 = c2 +
1
c2

+ 2λ, (29)

with

λ = c2〈a†
1a1〉 +

1
c2
〈a†

3a3〉 +
c

|c| 〈a1a3 + a†
1a

†
3〉, (30)

where 〈a†
jaj〉(j = 1, 3) is the mean photon numbers in

mode j, c2 =
√
〈a†

3a3〉/〈a†
1a1〉, and the sign of c is opposite

to 〈a1a3 + a†
1a

†
3〉. By substituting equations (29, 30) into

equation (18), we get a new criterion for the system: as
long as the parameter

2λ = (∆û)2 + (∆v̂)2 − (c2 +
1
c2

) < 0, (31)

one can confirm that the two-mode cavity fields are en-
tangled.

In Figure 2 we have plotted λ against dimensionless de-
tuning ∆′ for the phase choice of the pump field φ = π/2
and φ = 0, respectively, I2 = 50 and the cooperativity
parameter C = Ng2/2κγ = 5 (for simplicity, we assume
g1 = g2 = g and κ1 = κ3 = κ). It is evident from the fig-
ure that the quantity λ is less than 0 for φ = π/2, i.e., the
two-mode entanglement is generated, while for φ = 0 no
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entangled state can be built. In Figure 3 we have plotted
λ versus I2 for zero detuning, φ = π/2, C = 1, 5, 10. It is
clear that, for the weak pump intensity, the entanglement
criterion (31) is not satisfied and no entangled state exists
in the system. For certain large values of I2, the entangle-
ment for two-mode field in the cavity increases with the
increasing of I2, and has a maximum value and then it
starts decreasing for further increasing values of I2. With
the increasing of C, the two-mode entanglement is signif-
icantly enhanced. In order to further see the dependence
of entanglement on the dimensionless pump intensity I2

and the side-mode detuning ∆′, in Figure 4 we have plot-
ted λ as a function of ∆′ and I2 when C = 1, 5, 10 and
φ = π/2. These figures show the region of ∆′ where we
can get the entangled or disentangled states. Thus in this
manner we can predict that the system exhibits two-mode
entanglement in the cavity for the particular choice of the
pump intensity, the phase of the intense driving field and
the side-mode detuning.

3.2 Two-mode entanglement of the output field

Now, we will concentrate on the entanglement properties
of the outgoing cavity field. The output field that has
been considered for diverse applications can be measured
through standard optical procedures [17,20]. By means of
the input-output theory [34], the steady-state expressions
for the spectral density of the second-order moments out-
side the cavity can be calculated along the same lines as
discussed by Holm et al. [35] and An et al. [36]. The re-
sulting expressions are

〈a†
1a1〉out =

2κ
(α3−iω)(α∗

3+iω)A1+|D1|2A3 − (α∗
3+iω)D∗

1C3+c.c.

|(α1 + iω)(α∗
3 + iω) + D1C∗

3 |2
,

(32)

〈a†
3a3〉out =

2κ
(α1−iω)(α∗

1+iω)A3+|C3|2A1+(α∗
1+iω)C∗

3C3+c.c.

|(α3 + iω)(α∗
1 + iω) + C3D∗

1 |2
,

(33)

〈a1a3〉out =

2κ
(α∗

3 + iω)C3(A1 + A∗
1) − (α∗

1 − iω)D1(A3 + A∗
3)

|(α1 + iω)(α∗
3 + iω) + D1C∗

3 )|2

+ 2κ
(α∗

1 − iω)(α∗
3 + iω)C3 − D1|C3|2

|(α1 + iω)(α∗
3 + iω) + D1C∗

3 )|2 , (34)

where αj = Bj −Aj + κ (j = 1, 3) and ω is the frequency
deviation from the central frequency. We then have, for
the output field,

λ′ = c2〈a†
1a1〉out+

1
c2
〈a†

3a3〉out+
c

|c| 〈a1a3+a†
1a

†
3〉out. (35)

According to the discussion in Section 3.1, we know for the
output field, as long as the parameter λ′ is less than 0, one
can confirm that entanglement of the output fields exists.

Fig. 3. Variance λ vs. I2 for φ = π/2, and C = 1, 5 and 10;
the other parameters are the same as in Figure 2.
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Fig. 4. Variance λ vs. ∆′ and I2 for φ = π/2, and (a) C = 1,
(b) C = 5 and (c) C = 10; the other parameters are the same
as in Figure 2.
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Fig. 5. Variance λ′ vs. ω̃ for φ = π/2, and C = 1, 5 and 10;
the other parameters are the same as in Figure 2.

Fig. 6. Variance λ′ vs. I2 for ω̃ = 0, φ = π/2, and C = 1, 5
and 10; the other parameters are the same as in Figure 2.

In Figure 5, we have plotted the dependence of λ′ on
the dimensionless frequency ω̃ for φ = π/2 and C =
1, 5, 10. It is clear that the entanglement degree gets its
maximum at ω̃ = 0 and decreases with the increasing of
ω̃, i.e., better entanglement of the output field can be gen-
erated at the central frequency (ω̃ = 0). In Figure 6, we
have plotted λ′ versus dimensionless pump intensity I2,
for ω̃ = 0, ∆′ = 0, φ = π/2 and C = 1, 5, 10. Compar-
ing with the intracavity entanglement, the similar entan-
glement characteristics can be obtained outside the cav-
ity. Physically we can understand these results by noting
the following point: the spontaneous-emission processes
may take an important effect on the disentanglement for
the low-pump intensity. A lack of spontaneous emission
aids in the generation of good entanglement. On the other
hand, for strong pump intensity, the two-mode entangle-
ment can be achievable. This is due to the Rabi splitting
of the upper level a accompanied by vanishing splitting
level b which leads to negligible spontaneous emission. In
fact, better entangled states can be generated by choosing
suitable values of the cooperativity parameter and pump
intensity which may be approached in experiment.

4 Conclusion

In summary, the generation of continuous variable entan-
glement via atomic coherence in a two-mode three-level
cascade atomic system is investigated. Atomic coherence

between the top and bottom levels is induced with two
photons of a strong external pump field. It shows that
the intracavity and output entanglement in the steady
state can be achievable under some conditions. It is also
found that the two-mode entanglement shows some strong
dependence on the intensity of the pump field, the side-
mode detuning and the values of cooperativity parameter.
The generation of two-mode entangled states has been
proposed and experimentally implemented [15,37]. Our
scheme indicates that such two-mode entangled states can
be implemented on the basis of microwave cavity-quantum
electrodynamics [38]. We predict that the results in this
paper, based on a three-level atomic system including cav-
ity losses and spontaneous emission, can be verified by an
experiment such as the one used in reference [39].

This work was supported by the National Natural Sci-
ence Foundation of China under Grants Nos. 10174024 and
10474025.
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